Some time ago the CoGeNT experiment noted that the events observed in their detector are consistent with scattering of dark matter particles of mass 5-10 GeV. Although CoGeNT could not exclude that they are background, the dark matter interpretation was tantalizing because the same dark matter particle could also fit (with a bit of stretching) the DAMA modulation signal and the oxygen band excess from CRESST.
The possibility that dark matter particles could be so light caught experimenters with their trousers down. Most current experiments are designed to achieve the best sensitivity in the 100 GeV - 1 TeV ballpark, because of prejudices (weak scale supersymmetry) and some theoretical arguments (the WIMP miracle). In the low mass region the sensitivity of current techniques rapidly decreases, event though certain theoretical frameworks (e.g asymmetric dark matter) predict dark matter sitting at a few GeV. For example, experiments with xenon targets detect scintillation (S1) and ionization (S2) signals generated by particles scattering in a detector. Measuring both S1 and S2 ensure very good background rejection, however the scintillation signal is the main showstopper to lowering the detection threshold. Light dark matter particles can give only a tiny push to much heavier xenon atoms, and the experiment is able to collect only a few resulting scintillation photons, if any. Besides, the precise number of photons produced at low recoils (described by the notorious Leff parameter) is poorly known, and the subject is currently fiercely debated with knives, guns, and replies-to-comments-on-rebuttals.
It turns out that this debate may soon be obsolete. Peter Sorensen in his talk at IDM argues that


No comments:
Post a Comment
Note: Only a member of this blog may post a comment.